Keyword

EARTH SCIENCE > BIOLOGICAL CLASSIFICATION > ANIMALS/INVERTEBRATES > SEGMENTED WORMS (ANNELIDS) > BRISTLE WORMS

14 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 14
  • Live O. orensanzi were found in the AAD's Marine Research Facility emerging from sediments during feeding on 3 July 2014. It is likely that live specimens were included in samples collected for another species, Antarctonemertes sp. from intertidal rocky areas at Beall Island near Casey station (66 30.4265 degree S, 110 45.851 degrees E), East Antarctica in January and February 2014. It is also possible that the O. orensanzi were collected from southeast Newcomb Bay, adjacent to Casey station on 2 and 3 of February 2012 (Figure 4), and survived in the Marine Research Facility's aquarium, but this is considered less likely. Experiments were conducted at the AAD's quarantine facility in Kingston, Tasmania, between 19 July and 2 September 2014. This metadata record contains the results from bioassays conducted to show the response of Antarctic Polychaetes Ophryotrocha orensanzi to contamination from combinations if IFO 180 fuel and the fuel dispersants Ardrox 6129, Slickgone LTSW and Slickgone NS. Test solutions were prepared following the methods of Singer et al. (2000) with modifications by Barron and Ka'aihue (2003) and others. Water accommodated fractions of fuel in water (WAF) were produced using a 1:25 (v/v) fuel to FSW ratio in accordance with studies by Payne et al. (2014) and Brown et al., (2016) to facilitate comparability of results. Chemically enhanced water accommodated fractions (CEWAF) were made following a lower 1:100 (v/v) fuel to FSW ratio. A 1:20 (v/v) dispersant to fuel ratio was used for all three dispersants, an application rate of 1:20 dispersant to fuel rate was used both because this is the standard default application rate used in the field and to increase comparability to previous studies. Dispersant only mixes were made according to CEWAF specifications, substituting FSW for fuel. Test mixes were prepared in dark temperature-controlled cabinets at 0 plus or minus 1 degree C. Mixes were made in two L or five L glass aspirator bottles using a magnetic stirrer. Mix preparation followed the pre-vortex method in which a 20 - 25 % vortex was achieved in 0 plus or minus 1 degree C FSW before addition of the test materials. Once added, fuel was allowed to cool for a further 10 minutes before subsequent addition of dispersants during CEWAF preparation. Mixes were stirred for a total of 42 h with an additional settling time of 6 h following the recommendations determined as part of the hydrocarbon chemistry component of this project (Kotzakoulakis, unpublished data). The mixture was subsequently serially diluted to achieve the desired concentrations. Test concentrations were 100%, 50%, 20% and 10% for WAF and 10%, 5%, 1% and 0.1% for CEWAF. Concentrations for dispersant only treatments mimicked CEWAF in order to be directly comparable. Test solutions were kept in sealed glass bottles with minimal headspace at 0 plus or minus 1 degree C for a maximum of 3 h before use. Test dilutions were remade each four day period to replenish hydrocarbons lost through evaporation and absorption to simulate a repeated pulse exposure to the contaminant. Ninety percent of the test solution volume was replaced for each beaker during each water change by gently tipping out the solution with minimal disturbance to the test organisms. Replacement solutions were chilled to the correct temperature and replenished immediately to avoid any temperature shock to test animals. Beakers were topped up with deionized water between water changes to maintain water quality and solution volume. Bioassays were conducted in cold temperature cabinets at 0 plus or minus 1 degree C and light regimes were set to 18 h light and 6 h dark to mimic Antarctic conditions used by Brown et al. (2017). Exposure vessels were 100 ml glass beakers containing 80 ml of test solution. Beakers were left open to allow for the evaporation of lighter fuel components. Each experiment consisted of four replicates per treatment concentration, with eight to 10 individuals per replicate (8 each for Slickgone NS, 10 each for Ardrox and LTSW). Experiments ran for 12 days with observations at 24 h, 48 h, 96 h, 7 d, 8 d, 10 d and 12 d. Mortality was assessed at each observation using a Leica MZ7.5 dissecting microscope. Mortality was determined by the absence of response to stimuli, specifically lack of movement in the maxillae or mandibles. No food was added during experiments to avoid inclusion of an additional exposure pathway. Aliquots of each test concentration were taken at the beginning and end of each experiment, as well as before and after each water change to analyse the total petroleum hydrocarbon (TPH) content. Duplicate 25 ml samples were taken for each test dilution and immediately extracted with a mixture of Dichloromethane spiked with an internal standard of BrC20 (1-bromoeicosane) and cyclooctane. Extractions were analysed using Gas Chromatography with Flame Ionisation Detection (GC-FID) and Gas Chromatography mass spectrometry (GC-MS). The measured concentrations were integrated following the methods of Payne et al. (2014) to obtain a profile of hydrocarbon content over each 12 d test period.

  • Accompanying excel spreadsheet details the DNA samples taken and venom glands obtained and associated date/location/depth collection site data. Each specimen will be DNA barcoded using the diagnostic 600bp region of the mitochondrial COI gene and sequences lodged on GenBank. DNA barcoding will aid in evaluating the extent of cephalopod biodiversity including revealing cryptic species and phylogeographic structure. Confirmation of species identities is also essential as glands from multiple individuals will be required for detailed proteomic analysis of the proteins produced by the octopus posterior salivary glands. The chemical composition of the secretions will be determined through the application of multidisciplinary techniques, including cDNA library construction, mass spectrometry, molecular modelling and bioactivity testing. The studies will commence in 2008 and run for several years, being the major element in a PhD project run through Dr. Fry's laboratory. Data_Format Excel file with the following columns: Sample ID Diagnosis Description Other Ref Gland Storage Tissue Tissue Storage Voucher Preservation Images Order Family Genus Species Location Site Depth (start-stop) Latitude Longitude Date Time (UT) Capture Event Other Information

  • This dataset is a document describing the Pelagic Polychaetes of the Southern Ocean. It lists all the known species and with illustrated diagrams provides a guide to their taxonomic identification. The document is available for download as a pdf from the provided URL.

  • Sediment Recruitment Experiment 4 (SRE4) was a large, long term (5 year) field experiment run at Casey Station (from 2001 to 2006) testing the effects of 4 different hydrocarbons on marine sediment ecosystems. Four different types of hydrocarbons were individually mixed with defaunated marine sediments and deployed in trays on the seabed at O'Brien Bay-1. Trays were collected after deployment periods of 5 weeks, 56 weeks, 62 weeks, 2 years and 5 years. In addition there was a bioturbation treatment using the burrowing urchin Abatus (at 56 weeks only). Samples were collected from 4 replicate trays of each treatment at each sampling time. Analyses were done of sediment hydrocarbon chemistry, microbial communities, meiofaunal communities, macrofaunal communities and diatom communities. The hydrocarbon treatments were: a synthetic Mobil lubricating oil; the same Mobil lubricating oil after 125? hours use in a vehicle engine; a Fuchs synthetic lubricating oil marketed as highly biodegradable; and Special Antarctic Blend diesel fuel (SAB). A control uncontaminated sediment treatment was used for comparison.

  • Sediment Recruitment Experiment 4 (SRE4) was a large, long term (5 year) field experiment run at Casey Station (from 2001 to 2006) testing the effects of 4 different hydrocarbons on marine sediment ecosystems. Four different types of hydrocarbons were individually mixed with defaunated marine sediments and deployed in trays on the seabed at O'Brien Bay-1. Trays were collected after deployment periods of 5 weeks, 56 weeks, 62 weeks, 2 years and 5 years. In addition there was a bioturbation treatment using the burrowing urchin Abatus (at 56 weeks only). Samples were collected from 4 replicate trays of each treatment at each sampling time. Analyses were done of sediment hydrocarbon chemistry, microbial communities, meiofaunal communities, macrofaunal communities and diatom communities. The hydrocarbon treatments were: a synthetic Mobil lubricating oil; the same Mobil lubricating oil after 125? hours use in a vehicle engine; a Fuchs synthetic lubricating oil marketed as highly biodegradable; and Special Antarctic Blend diesel fuel (SAB). A control uncontaminated sediment treatment was used for comparison.

  • Sediment Recruitment Experiment 4 (SRE4) was a large, long term (5 year) field experiment run at Casey Station (from 2001 to 2006) testing the effects of 4 different hydrocarbons on marine sediment ecosystems. Four different types of hydrocarbons were individually mixed with defaunated marine sediments and deployed in trays on the seabed at O'Brien Bay-1. Trays were collected after deployment periods of 5 weeks, 56 weeks, 62 weeks, 2 years and 5 years. In addition there was a bioturbation treatment using the burrowing urchin Abatus (at 56 weeks only). Samples were collected from 4 replicate trays of each treatment at each sampling time. Analyses were done of sediment hydrocarbon chemistry, microbial communities, meiofaunal communities, macrofaunal communities and diatom communities. The hydrocarbon treatments were: a synthetic Mobil lubricating oil; the same Mobil lubricating oil after 125? hours use in a vehicle engine; a Fuchs synthetic lubricating oil marketed as highly biodegradable; and Special Antarctic Blend diesel fuel (SAB). A control uncontaminated sediment treatment was used for comparison.

  • This dataset contains results from the Second International BIOMASS Experiment II (SIBEX II) cruise of the Nella Dan, January 1985. This cruise is the fourth cruise out of a series of six, investigating the distribution, abundance and population structure of krill Euphausia superba in the Prydz Bay region, Antarctica. SIBEX II was co-ordinated with South Africa, Japan and France, and 66 grid sampling stations covered an area from 58 degrees to 93 degrees East and from 60 degrees South to the Antarctic coast. At each sampling station, surveys of krill and other zooplankton were taken, as well as a CTD cast and water collection for phytoplankton pigment, nutrients and primary production measurement. Species identity and abundance data were obtained. The major species investigated were Euphausia superba, Euphausia frigidia, Euphausia crystallorophias and Thysanoessa marcuria. Other pteropods and cephalopods were also studied, as well as results from hydroacoustic surveys of krill biomass. Summary results are listed in the documentation. The fields in this dataset are: species Station Number Haul Type RMT Biomass Weight Flowmeter Latitude Longitude Time Date Ice Sea State Density Sea Floor Maturity This dataset was updated by Angela McGaffin. This download file also contains the original dataset provided in 2007. There are four files available: SIBEX_II_krill.xls (original file) sibex2_krill_morphometrics.xslx sibex2_station_data.xslx sibex2_zooplankton_corrected.xls A minor data update took place on 202211-03 to add a scanned copy of the original acoustics log.

  • Sediment Recruitment Experiment 4 (SRE4) was a large, long term (5 year) field experiment run at Casey Station (from 2001 to 2006) testing the effects of 4 different hydrocarbons on marine sediment ecosystems. Four different types of hydrocarbons were individually mixed with defaunated marine sediments and deployed in trays on the seabed at O'Brien Bay-1. Trays were collected after deployment periods of 5 weeks, 56 weeks, 62 weeks, 2 years and 5 years. In addition there was a bioturbation treatment using the burrowing urchin Abatus (at 56 weeks only). Samples were collected from 4 replicate trays of each treatment at each sampling time. Analyses were done of sediment hydrocarbon chemistry, microbial communities, meiofaunal communities, macrofaunal communities and diatom communities. The hydrocarbon treatments were: a synthetic Mobil lubricating oil; the same Mobil lubricating oil after 125? hours use in a vehicle engine; a Fuchs synthetic lubricating oil marketed as highly biodegradable; and Special Antarctic Blend diesel fuel (SAB). A control uncontaminated sediment treatment was used for comparison.

  • Sediment Recruitment Experiment 4 (SRE4) was a large, long term (5 year) field experiment run at Casey Station (from 2001 to 2006) testing the effects of 4 different hydrocarbons on marine sediment ecosystems. Four different types of hydrocarbons were individually mixed with defaunated marine sediments and deployed in trays on the seabed at O'Brien Bay-1. Trays were collected after deployment periods of 5 weeks, 56 weeks, 62 weeks, 2 years and 5 years. In addition there was a bioturbation treatment using the burrowing urchin Abatus (at 56 weeks only). Samples were collected from 4 replicate trays of each treatment at each sampling time. Analyses were done of sediment hydrocarbon chemistry, microbial communities, meiofaunal communities, macrofaunal communities and diatom communities. The hydrocarbon treatments were: a synthetic Mobil lubricating oil; the same Mobil lubricating oil after 125? hours use in a vehicle engine; a Fuchs synthetic lubricating oil marketed as highly biodegradable; and Special Antarctic Blend diesel fuel (SAB). A control uncontaminated sediment treatment was used for comparison.

  • Sediment Recruitment Experiment 4 (SRE4) was a large, long term (5 year) field experiment run at Casey Station (from 2001 to 2006) testing the effects of 4 different hydrocarbons on marine sediment ecosystems. Four different types of hydrocarbons were individually mixed with defaunated marine sediments and deployed in trays on the seabed at O'Brien Bay-1. Trays were collected after deployment periods of 5 weeks, 56 weeks (one year), 62 weeks, 2 years and 5 years. In addition there was a bioturbation treatment using the burrowing urchin Abatus (at 56 weeks only). Samples were collected from 4 replicate trays of each treatment at each sampling time. Analyses were done of sediment hydrocarbon chemistry, microbial communities, meiofaunal communities, macrofaunal communities and diatom communities. The hydrocarbon treatments were: a synthetic Mobil lubricating oil; the same Mobil lubricating oil after 125 hours use in a vehicle engine; a Fuchs synthetic lubricating oil marketed as highly biodegradable; and Special Antarctic Blend diesel fuel (SAB). A control uncontaminated sediment treatment was used for comparison. A randomised block design was used with a tray of each treatment in 24 blocks (5 trays per block). Four blocks were sampled at each time (4 trays of each treatment). Meiofauna Two replicate cores were taken from each tray at each time. Copepods were identified to family. Nematodes were identified to genus. Data is from one, two and five years of the experiment. At one year there is only one replicate per tray for copepod data (a total of 4 replicates per treatment).